Results

eNauka >  Results >  DWFH: An improved data-driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-LSTM)
Title: DWFH: An improved data-driven deep weather forecasting hybrid model using Transductive Long Short Term Memory (T-LSTM)
Authors: Venkatachalam, K.; Trojovský, Pavel; Pamučar, Dragan  ; Bačanin Džakula, Nebojša  ; Simić, Vladimir  
Issue Date: 2023
Publication: Expert systems with applications
ISSN: 0957-4174 Expert Systems with Applications Search Idenfier
Publisher: OxfordNew York : Pergamon Press
Type: Article
Collation: vol. 213 str. 119270-119270
DOI: 10.1016/j.eswa.2022.119270
WoS-ID: 000890656300005
Scopus-ID: 2-s2.0-85145616827
VBS COBISS: 85561353
URI: https://rfos.fon.bg.ac.rs/handle/123456789/2486
https://enauka.gov.rs/handle/123456789/753308
https://plus.cobiss.net/cobiss/sr/sr/bib/85561353#izum.si
http://ezaposleni.singidunum.ac.rs/rest/sciNaucniRezultati/oai/record/2/9462
URL: https://www.sciencedirect.com/science/article/abs/pii/S0957417422022886?via%3Dihub
M-category: 
21aM21a

40
SCOPUSTM
24
WEB OF SCIENCETM
Altmetric
Dimensions

Find the DOI

Unpaywall

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.