Results

eNauka >  Rezultati >  Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients’ health prediction
Naziv: Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients’ health prediction
Autori Nebojsa Bacanin  ; N. Budimirovic; Ivana Strumberger  ; A. Adel Fahad Alrasheed; M. Abouhawwash
Godina: 2022
Publikacija: PLOS ONE
ISSN: 1932-6203 PLoS One / Public Library of Science Search Idenfier
Type: Article
Collation: vol. 17 br. 10 str. e0275727-e0275727
DOI: 10.1371/journal.pone.0275727
WoS-ID: 000924647500036
Scopus-ID: 2-s2.0-85139572976
PMID: 36215218
PMCID: PMC9550095
URI: http://ezaposleni.singidunum.ac.rs/rest/sciNaucniRezultati/oai/record/2/9464
https://enauka.gov.rs/handle/123456789/762285
URL: https://pubmed.ncbi.nlm.nih.gov/36215218/
Updated by: Bačanin Džakula, Nebojša[Univerzitet Singidunum]
M-category: 
22M22 - Rad u istaknutom međ. časopisu

9
SCOPUSTM
1
PubMed CentralTM
8
WEB OF SCIENCETM
Altmetric
Dimensions

Find the DOI

Unpaywall

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.