Results

eNauka >  Results >  Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable results through SHAP value analysis
Title: Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable results through SHAP value analysis
Authors: Todorovic, Mihailo  ; Stanisic, Nemanja  ; Zivkovic, Miodrag  ; Nebojsa Bacanin  ; Simic, Vladimir  ; Erfan Babaee Tirkolaee
Issue Date: 2023
Publication: Applied Soft Computing
ISSN: 1568-4946 Applied Soft Computing Search Idenfier
Type: Article
Collation: str. 110955-110955
DOI: 10.1016/j.asoc.2023.110955
WoS-ID: 001108066100001
Scopus-ID: 2-s2.0-85175043979
URI: https://enauka.gov.rs/handle/123456789/837642
https://www.sciencedirect.com/science/article/abs/pii/S1568494623009730
http://ezaposleni.singidunum.ac.rs/rest/sciNaucniRezultati/oai/record/2/9628
URL: https://www.sciencedirect.com/science/article/abs/pii/S1568494623009730?via%3Dihub
Metadata source: (Preuzeto iz ORCID-a) Živković, Miodrag
M-category: 
21aM21a

12
SCOPUSTM
9
WEB OF SCIENCETM
Altmetric
Dimensions

Find the DOI

Unpaywall

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.