Results
eNauka >
Results >
Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable results through SHAP value analysis
| Title: | Improving audit opinion prediction accuracy using metaheuristics-tuned XGBoost algorithm with interpretable results through SHAP value analysis | Authors: | Todorovic, Mihailo |
Issue Date: | 2023 | Publication: | Applied Soft Computing | ISSN: | 1568-4946 Applied Soft Computing Search Idenfier |
Type: | Article | Collation: | str. 110955-110955 | DOI: | 10.1016/j.asoc.2023.110955 | WoS-ID: | 001108066100001 | Scopus-ID: | 2-s2.0-85175043979 | URI: | https://enauka.gov.rs/handle/123456789/837642 https://www.sciencedirect.com/science/article/abs/pii/S1568494623009730 http://ezaposleni.singidunum.ac.rs/rest/sciNaucniRezultati/oai/record/2/9628 |
URL: | https://www.sciencedirect.com/science/article/abs/pii/S1568494623009730?via%3Dihub | Metadata source: | (Preuzeto iz ORCID-a) Živković, Miodrag | M-category: | 21aM21a |
12
SCOPUSTM
9
WEB OF SCIENCETM
Altmetric
Dimensions
Unpaywall
Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.