Results

eNauka >  Results >  Classification of Physiological States Through Machine Learning Algorithms Applied to Ultra-Short-Term Heart Rate and Pulse Rate Variability Indices on a Single-Feature Basis
Title: Classification of Physiological States Through Machine Learning Algorithms Applied to Ultra-Short-Term Heart Rate and Pulse Rate Variability Indices on a Single-Feature Basis
Authors: Iovino, Marta; Lazic, Ivan M; Loncar-Turukalo, Tatjana G; Javorka, Michal; Pernice, Riccardo; Faes, Luca
Issue Date: 2024
Publication: MEDICON 2023 AND CMBEBIH 2023, VOL 1
ISSN: 1680-0737 Search Idenfier
Type: Conference Paper
Collation: vol. 93 str. 114-124
DOI: 10.1007/978-3-031-49062-0_13
WoS-ID: 001261436400013
Scopus-ID: 2-s2.0-85181771981
URI: https://enauka.gov.rs/handle/123456789/935131
Project: "Sensoristica intelligente, infrastrutture e modelli gestionali per la sicurezza di soggetti fragili" (4FRAILTY) project - Italian MIUR [PON RI 2014-20, ARS01 00345]
SiciliAnMicronanOTecH Research And Innovation CEnter "SAMOTHRACE" (MUR) [PNRR-M4C2, ECS 00000022]
European Social Fund (ESF) Complementary Operational Programme [(POC) 2014/2020]
Sicily Region
Metadata source: (Preuzeto iz Nasi u WoS)
M-category: 
Mp. category will be shown later

1
SCOPUSTM
Altmetric
Dimensions

Find the DOI

Unpaywall

Google ScholarTM

Items in eNauka are protected by copyright, with all rights reserved, unless otherwise indicated.