Rezultati
eNauka >
Rezultati >
Estimating Koopman operators with sketching to provably learn large scale dynamical systems
| Naziv: | Estimating Koopman operators with sketching to provably learn large scale dynamical systems | Autori: | Meanti, Giacomo; Chatalic, Antoine; Kostic, Vladimir R; Novelli, Pietro; Pontil, Massimiliano; Rosasco, Lorenzo | Godina: | 2023 | Publikacija: | ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023) | ISSN: | 1049-5258![]() Pretraži identifikator |
Tip rezultata: | Konferencijski rad | WoS-ID: | 001220818805036 | URI: | https://enauka.gov.rs/handle/123456789/939577 | Projekat: | European Research Council (ERC) under the European Union [819789] European Research Council [SLING 819789] AFOSR [FA9550-18-1-7009, FA9550-17-1-0390, BAA-AFRL-AFOSR2016-0007] (European Office of Aerospace Research and Development) EU H2020-MSCA-RISE project [NoMADS -DLV-777826] Center for Brains, Minds and Machines (CBMM) - NSF STC [CCF-1231216, PE0000013-FAIR] European Union [951847, 101070617] |
Izvor metapodataka: | (Preuzeto iz Nasi u WoS) | M-kategorija: | Mp kategorija će biti prikazana naknadno. |
Rezultati na eNauka su zaštićeni autorskim pravima i sva prava su zadržana, osim ako nije drugačije naznačeno.
